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The elicitor-active hexa-/3-D-glucopyranosyl-D-glucitol (1), 
isolated from mycelial walls of Phytophthora megasperma f.sp. 
glycinea, induces antibiotic phytoalexin accumulation in soy
beans.1'2 Biological assays of several oligoglucosides revealed 
that hexa-/3-glucoside 2 is the minimum structural element 
required for high elicitor activity.3 Presumably this hexaglucoside 
has a specific structure to trigger the signal transduction pathway, 
leading to the synthesis of phytoalexins in soybeans. Methods 
to construct glycosidic linkages have made considerable progress 
as a result of the development of glycosidation procedures.4 There 
are a few general methodologies directed to the synthesis of 
oligosaccharides, such as solid-phase synthesis,5 one-step syn
thesis,6 enzyme-assisted synthesis,7 two-stage activation proce
dure,8 armed/disarmed glycosidation,9 and silicon-connected 
glycosidation.10 We report here the application of a one-pot, 
two-step glycosidation to the synthesis of an elicitor-active 
hexaglucoside 3. 

The one-pot approach arose from the idea that if the difference 
in reactivity between glycosyl donor 4 (Xi) and acceptor 5 (X2) 
is large enough to be distinguished by the activator Ai, then the 
glycosyl donor 4 can be selectively activated in the presence of 
Ai to give the tetraglucoside 6 (Figure 1). Subsequent activation 
of X2 in 6 in the presence of another activator A2, followed by 
coupling with the glycosyl acceptor 7, would provide the 
hexaglucoside 3 by a one-pot procedure. In our method for the 
one-pot glycosidation, it is expected that the initial coupling of 
glycosyl trichloroacetimidate 4 (Xi = 0(CNH)CCl3)
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thioglycoside 5 (X2 = SPh)12 in the presence of a catalytic amount 
of activator Ai (TMSOTf)13 would give 6. While the anomeric 
phenylthio groups in 5 and 6 are stable to the TMSOTf activation, 
addition of a second activator, A2 (NIS),14 and glycosyl acceptor 
7 to the reaction mixture should promote the selective activation 
of the glycosyl donor 6 to give the hexaglucoside 3 in one pot. In 
this reaction, TfOH generated at the first stage is effectively 
used for the second glycosidation step (TfOH/NIS). 

At first, triglucoside 12 was synthesized as the initial glycosyl 
donor 4 in the following way (Figure 2). Allyl glucoside (8) was 
prepared in 50% yield from glucose by treatment with allyl alcohol 
and Amberlite IR-120 (H+) resin, followed by benzylidenation 
with benzaldehyde dimethyl acetal. Selective protection of the 
2-hydroxy group in 8 with BzOBT15 gave a 92% yield of the 
3-hydroxyglucoside, which was subjected to glycosidation with 
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permethylbenzoyl glucosylbromide (9) in the presence of AgOTf16 

to afford the a-diglucoside 10 in 75% yield. Reductive ring 
opening of 10 with BH3-NMe3 and AlCl3

17 resulted in the 
formation of the 6-hydroxydiglucoside in 60% yield. Glycosi-
dation of the resulting alcohol was carried out with 9 in the 
presence of AgOTf to give triglucoside 11 in 75% yield. Removal 
of the 1-0-allyl group by treatment with RhCl(PPh3)3 followed 
by hydrolysis of the vinyl ether with Se02 and H2O2 gave the 
1-0-unprotected triglucosides. Isomerization of the anomeric 
alcohol was observed during hydrolysis of the vinyl ether. 
Treatment of both triglucosides with CCl3CN and DBU afforded 
the ca. 10:1 mixture of a- and 0-trichloroacetimidate 12 in 87% 
yield. 

One-pot glycosidation of the trichloroacetimidate 12, the 
phenylthioglucoside 13, and the acceptor 1418 was then examined. 
(Figure 3) Selective activation of imidates 12 (a//S mixture) with 
13 and 4-A molecular sieves by treatment with a catalytic amount 
of TMSOTf in CH2Cl2 at room temperature resulted in the 
formation of the phenylthiotetraglucoside. To the reaction 
mixture was added the acceptor 14, and then the phenylthio group 
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was activated by treatment with NIS (5 equiv) and TfOH to give 
hexaglucoside 15 in 50% yield. Treatment of 15 with NaOMe 
in MeOH and subsequent neutralization with Amberlite IR-120 
gave the benzyl ether, which was hydrogenolyzed over palladium 
hydroxide on carbon in MeOH and H2O to afford the desired 
hexaglucoside 3 in 94% overall yield. 

In conclusion, we have developed a new method to incorporate 
multiple glycosidic linkages into oligosaccharides. The ability to 
control the reactivity of the glycosyl donors suggests a novel 
strategy for the synthesis of oligosaccharides in a one-pot reaction. 
Extension of this one-pot concept could, in principle, form the 
basis for an automated carbohydrate synthesizer. 
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